Design Methodology of Microservices to Support Predictive Analytics for IoT Applications

Author:

Ali Sajjad,Jarwar Muhammad AslamORCID,Chong Ilyoung

Abstract

In the era of digital transformation, the Internet of Things (IoT) is emerging with improved data collection methods, advanced data processing mechanisms, enhanced analytic techniques, and modern service platforms. However, one of the major challenges is to provide an integrated design that can provide analytic capability for heterogeneous types of data and support the IoT applications with modular and robust services in an environment where the requirements keep changing. An enhanced analytic functionality not only provides insights from IoT data, but also fosters productivity of processes. Developing an efficient and easily maintainable IoT analytic system is a challenging endeavor due to many reasons such as heterogeneous data sources, growing data volumes, and monolithic service development approaches. In this view, the article proposes a design methodology that presents analytic capabilities embedded in modular microservices to realize efficient and scalable services in order to support adaptive IoT applications. Algorithms for analytic procedures are developed to underpin the model. We implement the Web Objects to virtualize IoT resources. The semantic data modeling is used to promote interoperability across the heterogeneous systems. We demonstrate the use case scenario and validate the proposed design with a prototype implementation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Economy for Next Generation Industrial IoT: A Vision Under Web 3.0;Communications in Computer and Information Science;2024

2. FedMicro-IDA: A federated learning and microservices-based framework for IoT data analytics;Internet of Things;2023-10

3. Federated Learning Model for Contextual Sensitive Data Quality Applications: Healthcare Use Case;2023 31st Signal Processing and Communications Applications Conference (SIU);2023-07-05

4. The Role of Microservices in the Internet of Things: Applications, Challenges, and Research Opportunities;2023 Fourteenth International Conference on Ubiquitous and Future Networks (ICUFN);2023-07-04

5. An Examination of Virtualization Technologies for Enabling Intelligent Edge Computing;2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS);2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3