Gelating Abilities of Two-Component System of Catecholic Derivatives and a Boronic Acid

Author:

Tsuge Akihiko,Kamoto Ryota,Yakeya Daisuke,Araki Koji

Abstract

In the last two decades, various kinds of the low-molecular-weight organogelators (LMOGs) have been investigated in terms of technological applications in various fields as well as their fundamental scientific properties. The process of gelation is generally considered to arise from immobilization of the solvents in the three-dimensional networks formed by the assembly of gelator molecules through weak intermolecular noncovalent interactions. From these points of view a huge number of organogelators have been developed so far. In the course of our research on LMOGs we have noticed a mixture of two gelators could show a different trend in gelation compared to the single gelator. It is well known that the catecholic moiety easily forms cyclic boronate esters with the boronic acid. Thus, we have investigated the two-component system based on cyclic boronate esters formed by the catechols and a boronic acid in terms of the control of gelation capability. Basic gelation properties of the constituent catecholic gelators have also been clarified. The catecholic gelators with the amide unit form no gel by addition of the boronic acid. In contrast, the catecholic gelators with the glutamic acid moiety improve their gelation abilities by mixing with the boronic acid. Furthermore, the gelation ability of the catecholic gelators having the urea unit is maintained after addition of the boronic acid. It has been found that gelation abilities of the catecholic gelators are highly affected by addition of the boronic acid. In terms of practical applications some gels can be obtained by on-site mixture of two kinds of solutions.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3