Double-Branch Multi-Scale Contextual Network: A Model for Multi-Scale Street Tree Segmentation in High-Resolution Remote Sensing Images

Author:

Zhang Hongyang12ORCID,Liu Shuo12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Street trees are of great importance to urban green spaces. Quick and accurate segmentation of street trees from high-resolution remote sensing images is of great significance in urban green space management. However, traditional segmentation methods can easily miss some targets because of the different sizes of street trees. To solve this problem, we propose the Double-Branch Multi-Scale Contextual Network (DB-MSC Net), which has two branches and a Multi-Scale Contextual (MSC) block in the encoder. The MSC block combines parallel dilated convolutional layers and transformer blocks to enhance the network’s multi-scale feature extraction ability. A channel attention mechanism (CAM) is added to the decoder to assign weights to features from RGB images and the normalized difference vegetation index (NDVI). We proposed a benchmark dataset to test the improvement of our network. Experimental research showed that the DB-MSC Net demonstrated good performance compared with typical methods like Unet, HRnet, SETR and recent methods. The overall accuracy (OA) was improved by at least 0.16% and the mean intersection over union was improved by at least 1.13%. The model’s segmentation accuracy meets the requirements of urban green space management.

Funder

Aerospace Information Research Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3