SOX2 and p53 Expression Control Converges in PI3K/AKT Signaling with Versatile Implications for Stemness and Cancer

Author:

Schaefer Thorsten,Steiner RebekahORCID,Lengerke Claudia

Abstract

Stemness and reprogramming involve transcriptional master regulators that suppress cell differentiation while promoting self-renewal. A distinguished example thereof is SOX2, a high mobility group (HMG)-box transcription factor (TF), whose subcellular localization and turnover regulation in embryonic, induced-pluripotent, and cancer stem cells (ESCs, iPSCs, and CSCs, respectively) is mediated by the PI3K/AKT/SOX2 axis, a stem cell-specific branch of the PI3K/AKT signaling pathway. Further effector functions associated with PI3K/AKT induction include cell cycle progression, cellular (mass) growth, and the suppression of apoptosis. Apoptosis, however, is a central element of DNA damage response (DDR), where it provides a default mechanism for cell clearance when DNA integrity cannot be maintained. A key player in DDR is tumor suppressor p53, which accumulates upon DNA-damage and is counter-balanced by PI3K/AKT enforced turnover. Accordingly, stemness sustaining SOX2 expression and p53-dependent DDR mechanisms show molecular–functional overlap in PI3K/AKT signaling. This constellation proves challenging for stem cells whose genomic integrity is a functional imperative for normative ontogenesis. Unresolved mutations in stem and early progenitor cells may in fact provoke transformation and cancer development. Such mechanisms are also particularly relevant for iPSCs, where genetic changes imposed through somatic cell reprogramming may promote DNA damage. The current review aims to summarize the latest advances in the understanding of PI3K/AKT/SOX2-driven stemness and its intertwined relations to p53-signaling in DDR under conditions of pluripotency, reprogramming, and transformation.

Funder

Krebsliga Schweiz

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3