Abstract
Commercial strawberries are mainly propagated using daughter plants produced on aerial runners because asexual propagation is faster than seed propagation, and daughter plants retain the characteristics of the mother plant. This study was conducted to investigate the effective factors for runner induction, as well as the molecular mechanisms behind the runner induction. An orthogonal test with 4 factors (photoperiod, temperature, gibberellin, and 6-benzyladenine), each with 3 levels was performed. Proteins were also extracted from the crowns with or without runners and separated by two-dimensional electrophoresis. The results of the orthogonal test showed that a long-day (LD) environment was the most influential factor for the runner formation, and 50 mg·L−1 of 6-BA significantly increased the number of runners. A proteomic analysis revealed that 32 proteins were differentially expressed (2-fold, p < 0.05) in the strawberry crowns with and without runners. A total of 16 spots were up-regulated in the crowns with runners induced by LD treatment. Identified proteins were classified into seven groups according to their biological roles. The most prominent groups were carbohydrate metabolism and photosynthesis, which indicated that the carbohydrate content may increase during runner formation. A further analysis demonstrated that the soluble sugar content was positively correlated with the number of runners. Thus, it is suggested that the photoperiod and 6-BA break the dormancy of the axillary buds and produce runners by increasing the soluble sugar content in strawberry.
Funder
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献