ST-DeepGait: A Spatiotemporal Deep Learning Model for Human Gait Recognition

Author:

Konz Latisha,Hill Andrew,Banaei-Kashani FarnoushORCID

Abstract

Human gait analysis presents an opportunity to study complex spatiotemporal data transpiring as co-movement patterns of multiple moving objects (i.e., human joints). Such patterns are acknowledged as movement signatures specific to an individual, offering the possibility to identify each individual based on unique gait patterns. We present a spatiotemporal deep learning model, dubbed ST-DeepGait, to featurize spatiotemporal co-movement patterns of human joints, and accordingly classify such patterns to enable human gait recognition. To this end, the ST-DeepGait model architecture is designed according to the spatiotemporal human skeletal graph in order to impose learning the salient local spatial dynamics of gait as they occur over time. Moreover, we employ a multi-layer RNN architecture to induce a sequential notion of gait cycles in the model. Our experimental results show that ST-DeepGait can achieve recognition accuracy rates over 90%. Furthermore, we qualitatively evaluate the model with the class embeddings to show interpretable separability of the features in geometric latent space. Finally, to evaluate the generalizability of our proposed model, we perform a zero-shot detection on 10 classes of data completely unseen during training and achieve a recognition accuracy rate of 88% overall. With this paper, we also contribute our gait dataset captured with an RGB-D sensor containing approximately 30 video samples of each subject for 100 subjects totaling 3087 samples. While we use human gait analysis as a motivating application to evaluate ST-DeepGait, we believe that this model can be simply adopted and adapted to study co-movement patterns of multiple moving objects in other applications such as in sports analytics and traffic pattern analysis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging Machine Learning for Gait Phase Classification with Varied Training Methods;2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP);2024-07-11

2. Supervised learning for improving the accuracy of robot-mounted 3D camera applied to human gait analysis;Heliyon;2024-02

3. Gait Recognition Algorithm of Coal Mine Personnel Based on LoRa;Applied Sciences;2023-06-19

4. Human gait recognition: A systematic review;Multimedia Tools and Applications;2023-03-17

5. A Review of Deep Learning Approaches for Human Gait Recognition;2023 2nd International Conference for Innovation in Technology (INOCON);2023-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3