Channel Capacity of Concurrent Probabilistic Programs

Author:

Salehi KhayyamORCID,Karimpour Jaber,Izadkhah HabibORCID,Isazadeh Ayaz

Abstract

Programs are under continuous attack for disclosing secret information, and defending against these attacks is becoming increasingly vital. An attractive approach for protection is to measure the amount of secret information that might leak to attackers. A fundamental issue in computing information leakage is that given a program and attackers with various knowledge of the secret information, what is the maximum amount of leakage of the program? This is called channel capacity. In this paper, two notions of capacity are defined for concurrent probabilistic programs using information theory. These definitions consider intermediate leakage and the scheduler effect. These capacities are computed by a constrained nonlinear optimization problem. Therefore, an evolutionary algorithm is proposed to compute the capacities. Single preference voting and dining cryptographers protocols are analyzed as case studies to show how the proposed approach can automatically compute the capacities. The results demonstrate that there are attackers who can learn the whole secret of both the single preference protocol and dining cryptographers protocol. The proposed evolutionary algorithm is a general approach for computing any type of capacity in any kind of program.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference48 articles.

1. Formal Analysis of the Information Leakage of the DC-Nets and Crowds Anonymity Protocols;Américo,2017

2. Scalable Approximation of Quantitative Information Flow in Programs;Biondi,2018

3. Quantitative Security Analysis for Multi-threaded Programs

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Obtaining Information Leakage Bounds via Approximate Model Counting;Proceedings of the ACM on Programming Languages;2023-06-06

2. An Automated Quantitative Information Flow Analysis for Concurrent Programs;Quantitative Evaluation of Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3