Optimized Dropkey-Based Grad-CAM: Toward Accurate Image Feature Localization

Author:

Liu Yiwei1,Tang Luping12,Liao Chen3,Zhang Chun1,Guo Yingqing1ORCID,Xia Yixuan1,Zhang Yangyang1,Yao Sisi1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China

2. SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China

3. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

Regarding the interpretable techniques in the field of image recognition, Grad-CAM is widely used for feature localization in images to reflect the logical decision-making information behind the neural network due to its high applicability. However, extensive experimentation on a customized dataset revealed that the deep convolutional neural network (CNN) model based on Gradient-weighted Class Activation Mapping (Grad-CAM) technology cannot effectively resist the interference of large-scale noise. In this article, an optimization of the deep CNN model was proposed by incorporating the Dropkey and Dropout (as a comparison) algorithm. Compared with Grad-CAM, the improved Grad-CAM based on Dropkey applies an attention mechanism to the feature map before calculating the gradient, which can introduce randomness and eliminate some areas by applying a mask to the attention score. Experimental results show that the optimized Grad-CAM deep CNN model based on the Dropkey algorithm can effectively resist large-scale noise interference and achieve accurate localization of image features. For instance, under the interference of a noise variance of 0.6, the Dropkey-enhanced ResNet50 model achieves a confidence level of 0.878 in predicting results, while the other two models exhibit confidence levels of 0.766 and 0.481, respectively. Moreover, it exhibits excellent performance in visualizing tasks related to image features such as distortion, low contrast, and small object characteristics. Furthermore, it has promising prospects in practical computer vision applications. For instance, in the field of autonomous driving, it can assist in verifying whether deep learning models accurately understand and process crucial objects, road signs, pedestrians, or other elements in the environment.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of China

Fundamental Research Funds for the Central Universities

Open Research Fund of key Laboratory of MEMS of Ministry of Education, Southeast University

Nanjing Forestry University College Student Innovation Training Program

NUPTSF

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3