A Novel Electrophoretic Technique to Improve Metasurface Sensing of Low Concentration Particles in Solution

Author:

Kurland Zachary A.1ORCID,Goyette Thomas1

Affiliation:

1. Submillimeter-Wave Technology Laboratory, University of Massachusetts Lowell, Lowell, MA 01854, USA

Abstract

A novel electrophoretic technique to improve metasurface sensing capabilities of charged particles in solution is presented. The proposed technique may improve the ability of metasurfaces to sense charged particles in solution in a manner not possible using the current standard of particle deposition (which allows particles to sediment randomly on a metasurface under evaporation) by inducing an external, nonuniform electric field through the metasurface apertures. Such a technique may be useful in various sensing applications, such as in biological, polymer, or environmental sciences, where low concentration particles in solution are of interest. The electrophoretic technique was simulated and experimentally tested using latex nanoparticles in solution. The results suggest that, using this technique, one may theoretically increase the particle density within the metasurface regions of greatest sensitivity by nearly 1900% in comparison to random sedimentation due to evaporation. Such an increase in particle density within the regions of greatest sensitivity may facilitate more precise material property measurements and enhance identification and detection capabilities of metasurfaces to particles in solution which constitute only a few hundred parts per million by mass. It was experimentally determined that the electrophoretic technique enhanced metasurface sensing capabilities of 333 parts per million by mass latex nanoparticle solutions by nearly 1700%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3