Towards Green Innovation in Smart Cities: Leveraging Traffic Flow Prediction with Machine Learning Algorithms for Sustainable Transportation Systems

Author:

Tao Xingyu1,Cheng Lan2,Zhang Ruihan3,Chan W. K.4,Chao Huang5,Qin Jing1

Affiliation:

1. Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China

2. Big Data Bio-Intelligence Laboratory, Big Data Institute, The Hong Kong University of Science and Technology, Hong Kong, China

3. The Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

4. The Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

5. School of Arts and Design, Shenzhen University, Shenzhen 518060, China

Abstract

The emergence of smart cities has presented the prospect of transforming urban transportation systems into more sustainable and environmentally friendly entities. A pivotal facet of achieving this transformation lies in the efficient management of traffic flow. This paper explores the utilization of machine learning techniques for predicting traffic flow and its application in supporting sustainable transportation management strategies in smart cities based on data from the TRAFFIC CENSUS of the Hong Kong Transport Department. By analyzing anticipated traffic conditions, the government can implement proactive measures to alleviate congestion, reduce fuel consumption, minimize emissions, and ultimately improve quality of life for urban residents. This study proposes a way to develop traffic flow prediction methods with different methodologies in machine learning with a comparison with other results. This research aims to highlight the importance of leveraging machine learning technology in traffic flow prediction and its potential impact on sustainable transportation systems for the green innovation paradigm. The findings of this research have practical implications for transportation planners, policymakers, and urban designers. The predictive models demonstrated can support decision-making processes, enabling proactive measures to optimize traffic flow, reduce emissions, and improve the overall sustainability of transportation systems.

Funder

Hong Kong Prof. Edmond Ko Mentoring Project Award

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3