Effect of Cooking on Phenolic Compound Content and In Vitro Bioaccessibility in Sustainable Foods: A Case Study on Black Beans

Author:

Melini Francesca1ORCID,Lisciani Silvia1ORCID,Camilli Emanuela1ORCID,Marconi Stefania1,Melini Valentina1ORCID

Affiliation:

1. CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Roma, Italy

Abstract

Legume production and consumption have emerged as meeting sustainability principles. Legumes can help fight climate change, hunger, and obesity. Legumes are also a valuable dietary source of phytochemicals, whose content and composition vary depending on genotype, as well as on growing conditions, geographical origin, storage, and cooking. The health effects of legume consumption are nevertheless related to the bioaccessibility of these molecules, which is deeply affected by the cooking method. The aim of this study was to investigate the content and composition of phenolic compounds and anthocyanins present in black beans grown locally and cooked with three different methods (i.e., regular boiling, pressure-cooking, and microwave-cooking) and determine the in vitro biaccessibility. It emerged that Total Phenolic Content (TPC) and Total Anthocyanin Content (TAC) decreased significantly in all three cooked black beans. TPC loss was lowest (63%) in pressure-cooked beans and highest (77%) in boiled beans. TAC loss ranged between 93 and 98% but was not significantly different among treatments. Caffeic, t-ferulic, and sinapic acids were identified by HPLC. Cyanindin-3-O-glucoside and Peonidin-3-O-glucoside were also detected. The simulation of gastrointestinal digestion showed that phenolic compound bioaccessibility was highest when beans were boiled or pressure-cooked, while anthocyanins were mostly bioaccessible in pressure-cooked black beans.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3