Affiliation:
1. Team of Ecological and Natural Map, National Institute of Ecology, Seocheon 33657, Republic of Korea
2. Center for Environmental Assessment Monitoring, Environmental Assessment Group, Korea Environment Institute (KEI), Sejong 30147, Republic of Korea
Abstract
With an increase in local precipitation caused by extreme climatic phenomena, the frequency of landslides and associated damage has also increased. Therefore, compiling fine-scale landslide susceptibility assessment maps based on data from landslide-affected areas is essential. Deep neural network (DNN) and kernel-based DNN(DNNK) models were used to prepare landslide susceptibility maps of the mountainous Pyeongchang-gun region (South Korea) within a geographic information system framework. To map landslide susceptibility, datasets of landslide occurrence areas, topography, land use, forest, and soil were collected and entered into spatial databases, and 18 factors were then selected from the databases and used as model inputs. The training and test datasets consisted of 1600 and 400 landslide locations, respectively. The test accuracies of the DNN and DNNK models were 98.19% and 97.53% and 94.11% and 92.22% for the area under the receiver operating characteristic curve and the average precision value of the precision-recall curve, respectively. The location of future landslides can now be quickly and efficiently predicted using remote sensing data at a lower cost and with less labor. The landslide susceptibility maps produced in this study can play a role in sustainability and serve as references for establishing policies for landslide prevention and mitigation.
Funder
National Research Foundation of Korea
Ministry of Environment
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献