Affiliation:
1. Environmental Dynamics Ph.D. Program, University of Arkansas, Fayetteville, AR 72701, USA
2. Fay Jones School of Architecture and Design, University of Arkansas, Fayetteville, AR 72701, USA
3. USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA
Abstract
Today, the application of green materials in the building industry is the norm rather than the exception and reflects an attempt to mitigate the sector’s environmental impacts. Mass timber is growing rapidly in the construction field because of its long span, speed of installation, lightness and toughness, carbon sequestration capabilities, renewability, fire rating, acoustic isolation, and thermal resistance. Mass timber is close to overtaking steel and concrete as the preferred material. The endeavor of this research is to quantitatively assess the ability of this green material to leverage the abatement of carbon emissions. Life cycle assessment (LCA) is a leading method for assessing the environmental impacts of the building sector. The recently completed Adohi Hall mass timber building on the University of Arkansas campus was used as a case study in an investigation to quantify greenhouse gas (GHG) emissions throughout the construction phase only. The energy used in building operations is the most dominant source of emissions in the building industry and has galvanized research on increasing the efficiency of building operations, but reduced emissions have made the impacts of embodied carbon (EC) components more noticeable in the building life cycle. While most studies have focused on the manufacturing stage, only a few to date have focused on the construction process. Consequently, few data are available on the environmental impacts associated with the installation of mass timber as a new green material. The present study began with the quantification of the materials and an inventory of the equipment used for construction. Then, this study determined the EC associated with running the equipment for building construction. The GHG emissions resulting from the transportation of materials to the site were also quantified. Based on data collected from the construction site, the results of this study indicate that earthwork ranks first in carbon emissions, followed by mass timber installation and construction. In third place is ready-mix poured concrete and rebar installation, followed by Geopiers. A comparison of these results with those in the existing literature shows that the EC generally associated with the building construction phase has been underestimated to date. Furthermore, only emissions associated with the fuel usage of the main equipment were considered.
Funder
Forest Products Laboratory
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献