Predicting Conduction Heat Flux through Macrolayer in Nucleate Pool Boiling

Author:

Danish MohdORCID,Al Mesfer Mohammed K.,Ansari Khursheed B.ORCID,Hasan Mudassir,Amari Abdelfattah,Azeem Babar

Abstract

In the current work, the heat flux in nucleate pool boiling has been predicted using the macrolayer and latent heat evaporation model. The wall superheat (ΔT) and macrolayer thickness (δ) are the parameters considered for predicting the heat flux. The influence of operating parameters on instantaneous conduction heat flux and average heat flux across the macrolayer are investigated. A comparison of the findings of current model with Bhat’s decreasing macrolayer model revealed a close agreement under the nucleate pool boiling condition at high heat flux. It is suggested that conduction heat transfer strongly rely on macrolayer thickness and wall superheat. The wall superheat and macrolayer thickness is found to significantly contribute to conduction heat transfer. The predicted results closely agree with the findings of Bhat’s decreasing macrolayer model for higher values of wall superheat signifying the nucleate boiling. The predicted results of the proposed model and Bhat’s existing model are validated by the experimental data. The findings also endorse the claim that predominant mode of heat transfer from heater surface to boiling liquid is the conduction across the macrolayer at the significantly high heat flux region of nucleate boiling.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3