A Thermal Model for Three-Core Armored Submarine Cables Based on Distributed Temperature Sensing

Author:

González-Cagigal Miguel ÁngelORCID,del-Pino-López Juan CarlosORCID,Bachiller-Soler AlfonsoORCID,Cruz-Romero PedroORCID,Rosendo-Macías José AntonioORCID

Abstract

This paper presents a procedure for the derivation of an equivalent thermal network-based model applied to three-core armored submarine cables. The heat losses of the different metallic cable parts are represented as a function of the corresponding temperatures and the conductor current, using a curve-fitting technique. The model was applied to two cables with different filler designs, supposed to be equipped with distributed temperature sensing (DTS) and the optical fiber location in the equivalent circuit was adjusted so that the conductor temperature could be accurately estimated using the sensor measurements. The accuracy of the proposed model was tested for both stationary and dynamic loading conditions, with the corresponding simulations carried out using a hybrid 2D-thermal/3D-electromagnetic model and the finite element method for the numerical resolution. Mean relative errors between 1 and 3% were obtained using an actual current profile. The presented procedure can be used by cable manufacturers or by utilities to properly evaluate the cable thermal situation.

Funder

FEDER/Ministerio de Ciencia e Innovación – Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Wind Energy in Europe: Outlook to 2023https://windeurope.org/about-wind/reports/wind-energy-in-europe-outlook-to-2023/

2. TB 680-Implementation of Long AC HV and EHV Cable Systems,2017

3. TB 610—Offshore Generation Cable Connections,2015

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3