Thermal and Surface Radiosity Analysis of an Underfloor Heating System in a Bioclimatic Habitat

Author:

Laafer AbdelkaderORCID,Semmar Djaffar,Hamid Abdelkader,Bourouis MahmoudORCID

Abstract

This paper addresses the modeling of convective and radiative heat transfer to achieve an acceptable level of indoor temperature. The results presented were obtained in a pilot project in which an energy-efficient house was built on a site located west of Algiers. The main objective was to perform a numerical simulation to investigate how the temperature of the heat-transfer fluid circulating in the floor heating system affected the temperature of the indoor air and also how surface radiosity affected the temperature profile of the indoor air. The study employed the finite element method integrated into the Comsol Multiphysics software. The model was validated using experimental data reported in the literature for the pilothouse at the same meteorological conditions. An error of about 2.32% was apparent between the experimental and theoretical results. Results showed that the increase of the heating transfer fluid temperature from 30 to 50 °C produced the same temperature of about 15.1 °C taken at a 50 cm height inside the room. The air temperature remained stable, with an insignificant variation after 72 h of heating. Surface radiosity increased as a function of time and reached an almost constant value of 380 W·m−2 after 72 h because of the stability of the air temperature by convection.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. Zero energy balance and zero on-site CO2 emission housing development in the Mediterranean climate

2. Design and performance of the solar-powered floor heating system in a green building

3. An Italian pilot project for zero energy buildings: Towards a quality-driven approach

4. Possibilities and Limitations of Radiant Floor Cooling (No. CONF-9702141);Olesen,1997

5. Control strategies for combined heating and cooling radiant systems;Simmonds;Ashrae Trans.,1994

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3