Abstract
In this paper, a strategy for reducing the electromagnetic interferences induced by power lines on metallic pipelines is proposed and numerically investigated. The study considers a set of steel conductors interposed between the power line and the pipeline. Different shapes of conductor cross sections and different magnetic permeabilities are considered, to identify the solution exhibiting the greatest mitigation efficiency for the same amount of material. The investigation is carried out by means of a quasi-3D finite element analysis. Results show that the main mechanism responsible for the mitigation is constituted by the currents induced in the screening conductors by the power line. Hence, a high magnetic permeability can have a detrimental effect since it reduces the skin depth to values below the size of the screening conductor. In this case, a reduction of the screening current and in the mitigation efficiency is observed. Nevertheless, the study shows that the use of strip-shaped screening conductors allows the employment of cheaper magnetic materials without compromising the mitigation efficacy of the screening conductors.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献