Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns

Author:

Florkowski MarekORCID

Abstract

In the resilient and reliable electrical power system, the condition of high voltage insulation plays a crucial role. In the field of high voltage insulation integrity, the partial discharge (PD) inception and development trends are essential for assessment criteria in diagnostics systems. The observed trend to employ more and more sophisticated algorithms with machine learning features and artificial intelligence (AI) elements is observed everywhere. The classification and identification of features in PD images is perceived as a critical requirement for an effective high voltage insulation diagnosis. In this context, techniques allowing for anomaly detection, trends observation, and feature extraction in partial discharge patterns are important. In this paper, the application of few algorithms belonging to image processing, machine learning and optical flow is presented. The feature extraction refers to image segmentation and detection of coherent forms in the images. The anomaly detection algorithms can trigger early detection of the trend changes or the appearance of a new discharge form, and hence are suitable for PD monitoring applications. Anomaly detection can also handle transients and disturbances that appear in the PD image as an indication of an abnormal state. The future monitoring systems should be equipped with trend evolution algorithms. In this context, two examples of insulation aging and application of PD-based monitoring are shown. The first one refers to deep convolutional neural networks used for classification of deterioration stages in high voltage insulation. The latter one demonstrates application of optical flow approach for motion detection in partial discharge images. The motivation for the research was the strive to machine-controlled pattern analysis, leading towards intelligent PD-based diagnostics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Internal Partial Discharges—Pulse Distributions, Physical Mechanisms and Effects on Insulation;Kärkkäinen,1976

2. The importance of statistical characteristics of partial discharge data

3. Discrimination of partial discharge patterns using a neural network

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3