Expanding Sparse Radar Depth Based on Joint Bilateral Filter for Radar-Guided Monocular Depth Estimation

Author:

Lo Chen-Chou1ORCID,Vandewalle Patrick1ORCID

Affiliation:

1. Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium

Abstract

Radar data can provide additional depth information for monocular depth estimation. It provides a cost-effective solution and is robust in various weather conditions, particularly when compared with lidar. Given the sparse and limited vertical field of view of radar signals, existing methods employ either a vertical extension of radar points or the training of a preprocessing neural network to extend sparse radar points under lidar supervision. In this work, we present a novel radar expansion technique inspired by the joint bilateral filter, tailored for radar-guided monocular depth estimation. Our approach is motivated by the synergy of spatial and range kernels within the joint bilateral filter. Unlike traditional methods that assign a weighted average of nearby pixels to the current pixel, we expand sparse radar points by calculating a confidence score based on the values of spatial and range kernels. Additionally, we propose the use of a range-aware window size for radar expansion instead of a fixed window size in the image plane. Our proposed method effectively increases the number of radar points from an average of 39 points in a raw radar frame to an average of 100 K points. Notably, the expanded radar exhibits fewer intrinsic errors when compared with raw radar and previous methodologies. To validate our approach, we assess our proposed depth estimation model on the nuScenes dataset. Comparative evaluations with existing radar-guided depth estimation models demonstrate its state-of-the-art performance.

Funder

KU Leuven-Taiwan MOE Scholarship

Internal Funds KU Leuven

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3