The Energy-Saving Potential of Air-Side Economisers in Modular Data Centres: Analysis of Opportunities and Risks in Different Climates

Author:

Badiei Ali1ORCID,Jadowski Eric2,Sadati Saba3,Beizaee Arash4,Li Jing5ORCID,Khajenoori Leila1,Nasriani Hamid Reza1ORCID,Li Guiqiang6,Xiao Xin7ORCID

Affiliation:

1. School of Engineering, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK

2. Department of Engineering, Faculty of Science and Engineering, University of Hull, Hull HU6 7RX, UK

3. School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK

4. School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK

5. Centre for Sustainable Energy Technologies, Energy and Environment Institute, University of Hull, Hull HU6 7RX, UK

6. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China

7. School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

Abstract

This study examines the feasibility of utilising outside air for ‘free cooling’ in modular data centres through the implementation of an air-side economiser, as an alternative to traditional mechanical cooling systems. The objective is to offset the energy consumption associated with cooling by leveraging the natural cooling capacity of the ambient air. To investigate this potential, a 90-kW modular data centre is employed as the base case for model validation and analysis of energy reduction possibilities. The research employs dynamic thermal modelling techniques to assess the efficacy of the air-side economiser in four distinct climatic zones: Stockholm, Dubai, San Francisco, and Singapore, representing diverse worldwide climates. The model is meticulously calibrated and validated using power usage effectiveness (PUE) values obtained from the Open Compute Project. Simulation runs are conducted to evaluate the energy-reduction potential achievable with the air-side economiser compared to conventional mechanical air-conditioning systems. The results indicate significant energy reductions of up to 86% in moderate climates, while minimal reductions are observed in dry and hot climates. This comprehensive analysis offers valuable insights into the intricate relationship between modular data centres, their operational characteristics, and the viability of employing air-side economisers for free cooling and energy efficiency across different climatic conditions. The contribution of this publication to this field of science lies in its exploration of the practicality and energy-saving potential of air-side economisers in modular data centres. By utilising dynamic thermal modelling and empirical validation, this study provides evidence-based insights into the effectiveness of this cooling strategy, shedding light on its applicability in various climates. The findings contribute to the understanding of energy-efficient cooling solutions in data-centre design and operation, paving the way for more sustainable practices in the field.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3