Power-Weighted Prediction of Photovoltaic Power Generation in the Context of Structural Equation Modeling

Author:

Zhu Hongbo1,Zhang Bing12,Song Weidong12,Dai Jiguang12ORCID,Lan Xinmei1,Chang Xinyue1

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

2. Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China

Abstract

With the popularization of solar energy development and utilization, photovoltaic power generation is widely used in countries around the world and is increasingly becoming an important part of new energy generation. However, it cannot be ignored that changes in solar radiation and meteorological conditions can cause volatility and intermittency in power generation, which, in turn, affects the stability and security of the power grid. Therefore, many studies aim to solve this problem by constructing accurate power prediction models for PV plants. However, most studies focus on adjusting the photovoltaic power station prediction model structure and parameters to achieve a high prediction accuracy. Few studies have examined how the various parameters affect the output of photovoltaic power plants, as well as how significantly and effectively these elements influence the forecast accuracy. In this study, we evaluate the correlations between solar irradiance intensity (GHI), atmospheric density (ρ), cloudiness (CC), wind speed (WS), relative humidity (RH), and ambient temperature (T) and a photovoltaic power station using a Pearson correlation analysis and remove the factors that have little correlation. The direct and indirect effects of the five factors other than wind speed (CC) on the photovoltaic power station are then estimated based on structural equation modeling; the indirect effects are generated by the interaction between the variables and ultimately have an impact on the power of the photovoltaic power station. Particle swarm optimization-based support vector regression (PSO-SVR) and variable weights utilizing the Mahalanobis distance were used to estimate the power of the photovoltaic power station over a short period of time, based on the contribution of the various solar radiation and climatic elements. Experiments were conducted on the basis of the measured data from a distributed photovoltaic power station in Changzhou, Jiangsu province, China. The results demonstrate that the short-term power of a photovoltaic power station is significantly influenced by the global horizontal irradiance (GHI), ambient temperature (T), and atmospheric density (ρ). Furthermore, the results also demonstrate how calculating the relative importance of the various contributing factors can help to improve the accuracy when estimating how powerful a photovoltaic power station will be. The multiple weighted regression model described in this study is demonstrated to be superior to the standard multiple regression model (PSO-SVR). The multiple weighted regression model resulted in a 7.2% increase in R2, a 10.7% decrease in the sum of squared error (SSE), a 2.2% decrease in the root mean square error (RMSE), and a 2.06% decrease in the continuous ranked probability score (CRPS).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference46 articles.

1. Development and Applications of photovoltaic—Thermal systems: A review;Jia;Renew. Sustain. Energy Rev.,2019

2. A review of photovoltaic systems: Design, operation and maintenance;Sol. Energy,2019

3. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization;Ahmed;Renew. Sustain. Energy Rev.,2020

4. An Implementation of Full Cycle Strategy Using Dynamic Blending for Rapid Refresh Short-range Weather Forecasting in China;Feng;Adv. Atmos. Sci.,2021

5. Li, Y., Wan, Y., Xiao, J., and Zhu, Y. (2020). Bio-Inspired Computing: Theories and Applications: 14th International Conference, BIC-TA 2019, Zhengzhou, China, 22–25 November 2019, Revised Selected Papers, Part II 14, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3