An Integrated Multi-Sensor Network for Adaptive Grasping of Fragile Fruits: Design and Feasibility Tests

Author:

Xie Yuanxin,Zhang Baohua,Zhou Jun,Bai Yuhao,Zhang Meng

Abstract

Secure grasping of fragile fruits and other agricultural products without potential slip and damage is still a challenge due to the size and shape varying, bruise susceptible, as well as hardness changing during fruit and vegetable maturation. In the robotic grasping process, the mechanical damage mainly depends upon the aggressiveness of the gripper and the sensitivity of the product to the damage. In this study, a flexible gripper integrated with multi-sensor network is designed and tested. The network proposed includes three kinds of sensors that enable the gripper to grasp various products with the sense of touch and visual perception. Particular attention has been attached to the sensors applied between the fingers, and this makes sensing and grasping capabilities improved. To create an accurate grasping system, a grasping algorithm and the force control model are proposed for any bending state based on Cosserat theory. The boundary detection is included in the grasping algorithm, detecting the shape edge by some certain point calculation. The created grasping system guarantees mechanical compliance by evaluating and adjusting the finger status including force, angle, and direction. Multi-group tests have been done on grasping several objects of different sizes and materials in daily life. The relationship between force, bending, and surface material is also analyzed and compared under different conditions. The numerical comparisons related to the measurement error are analyzed based on their standard deviations. Experimental results indicate that this flexible manipulator with proposed system and strategy has better grasping ability for fragile fruits with its good flexibility and dexterity.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3