Cyber Situation Comprehension for IoT Systems based on APT Alerts and Logs Correlation

Author:

Cheng Xiang,Zhang Jiale,Chen Bing

Abstract

With the emergence of the Advanced Persistent Threat (APT) attacks, many Internet of Things (IoT) systems have faced large numbers of potential threats with the characteristics of concealment, permeability, and pertinence. However, existing methods and technologies cannot provide comprehensive and prompt recognition of latent APT attack activities in the IoT systems. To address this problem, we propose an APT Alerts and Logs Correlation Method, named APTALCM and a framework of deploying APTALCM on the IoT system, where an edge computing architecture was used to achieve cyber situation comprehension without too much data transmission cost. Specifically, we firstly present a cyber situation ontology for modeling the concepts and properties to formalize APT attack activities in the IoT systems. Then, we introduce a cyber situation instance similarity measurement method based on the SimRank mechanism for APT alerts and logs Correlation. Combining with instance similarity, we further propose an APT alert instances correlation method to reconstruct APT attack scenarios and an APT log instances correlation method to detect log instance communities. Through the coalescence of these methods, APTALCM can accomplish the cyber situation comprehension effectively by recognizing the APT attack intentions in the IoT systems. The exhaustive experimental results demonstrate that the two kernel modules, i.e., Alert Instance Correlation Module (AICM) and Log Instance Correlation Module (LICM) in our APTALCM, can achieve both high true-positive rate and low false-positive rate.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference18 articles.

1. Cloud Storage Defense Against Advanced Persistent Threats: A Prospect Theoretic Study

2. A new alert correlation algorithm based on attack graph;Roschke;CISIS,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3