Guanylyl Cyclase Activator Improves Endothelial Function by Decreasing Superoxide Anion Concentration

Author:

Martinelli Ariane M.1,de Moraes Luis Henrique O.1,de Moraes Thiago F.1,Rodrigues Gerson J.1ORCID

Affiliation:

1. Department of Physiological Sciences, Federal University of São Carlos, São Carlos 13565-905, Brazil

Abstract

Introduction: Soluble guanylyl cyclase (sGC) activation in vascular smooth muscle has the potential to induce vasodilation. Chronic sGC activation enhanced vascular function in the congestive heart failure animal model. Therefore, sGC activation can lead to vasodilation and improvement in endothelial function. Objective: To investigate whether the selective sGC activator can revert the endothelial dysfunction and investigate the mechanism of action. Methods: Wistar rats were split into two groups: normotensive (2K) and hypertensive rats (2K-1C). Intact aortic rings were placed in a myograph and incubated with 0.1 µM ataciguat for 30 min. Cumulative concentration-effect curves were generated for acetylcholine (Ach) to assess endothelial function. The pD2 and maximum relaxant effect (Emax) were measured to Ach. In endothelial cell culture, superoxide anion (O2•−) was detected by using fluorescent probes, including DHE and lucigenin. Results: Ataciguat improved the relaxation induced by acetylcholine in 2K-1C (pD2: 6.99 ± 0.08, n = 6) compared to the control (pD2: 6.43 ± 0.07, n = 6, p < 0.05). The aortic rings were also improved from 2K (pD2: 7.04 ± 0.13, n = 6) compared to the control (pD2: 6.59 ± 0.07, n = 6, p < 0.05). Moreover, Emax was improved by ataciguat treatment in the 2K-1C aorta (Emax: 81.0 ± 1.0; n = 6), and 2K aorta (Emax: 92.98 ± 1.83; n = 6), compared to the control (Emax 2K-1C: 52.14 ± 2.16, n = 6; and Emax 2K: 76.07 ± 4.35, n = 6, p < 0.05). In endothelial cell culture, treatment with ataciguat (0.1, 1, and 10 µM) resulted in a reduction of the superoxide anion formation induced by angiotensin II. Conclusions: Our findings indicated that ataciguat effectively enhanced endothelial function through the inactivation of superoxide anions.

Funder

São Paulo Research Foundation

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3