Affiliation:
1. Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
Abstract
GNAS-activating somatic mutations give rise to Fibrous Dysplasia/McCune–Albright syndrome (FD/MAS). The low specificity of extra-skeletal signs of MAS and the mosaic status of the mutations generate some difficulties for a proper diagnosis. We studied the clinical and molecular statuses of 40 patients referred with a clinical suspicion of FD/MAS to provide some clues. GNAS was sequenced using both Sanger and Next-Generation Sequencing (NGS). We were able to identify the pathogenic variants in 25% of the patients. Most of them were identified in the affected tissue, but not in blood. Additionally, NGS demonstrated the ability to detect more patients with mosaicism (8/34) than Sanger sequencing (4/39). Even if in some cases, the clinical information was not complete, we confirmed that, as in previous works, when the patients were young children with a single manifestation, such as hyperpigmented skin macules or precocious puberty, the molecular diagnosis was usually negative. In conclusion, as FD/MAS is caused by mosaic variants, it is essential to use sensitive techniques that allow for the detection of low percentages and to choose the right tissue to study. When not possible, and due to the low positive genetic rate, patients with FD/MAS should only be genetically tested when the clinical diagnosis is really uncertain.
Funder
Instituto de Salud Carlos III
Basque Government
European Society of Paediatric Endocrinology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献