First Contiguous Genome Assembly of Japanese Lady Bell (Adenophora triphylla) and Insights into Development of Different Leaf Types

Author:

Kang Ji-Nam1ORCID,Lee Si-Myung1ORCID,Choi Ji-Weon2,Lee Seung-Sik34,Kim Chang-Kug1ORCID

Affiliation:

1. Genomics Division, National Institute of Agricultural Sciences, Jeonju 54874, Republic of Korea

2. Postharvest Technology Division, National Institute of Horticultural and Herbal Science, Wanju 55365, Republic of Korea

3. Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea

4. Department of Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea

Abstract

Adenophora triphylla is an important medicinal and food plant found in East Asia. This plant is rich in secondary metabolites such as triterpenoid saponin, and its leaves can develop into different types, such as round and linear, depending on the origin of germination even within the same species. Despite this, few studies have comprehensively characterized the development processes of different leaf types and triterpenoid saponin pathways in this plant. Herein, we provide the first report of a high-quality genome assembly of A. triphylla based on a combination of Oxford Nanopore Technologies and Illumina sequencing methods. Its genome size was estimated to be 2.6 Gb, and the assembled genome finalized as 2.48 Gb, containing 57,729 protein-coding genes. Genome completeness was assessed as 95.6% using the Benchmarking Universal Single-Copy Orthologs score. The evolutionary divergence of A. triphylla was investigated using the genomes of five plant species, including two other species in the Campanulaceae family. The species A. triphylla diverged approximately 51-118 million years ago from the other four plants, and 579 expanded/contracted gene families were clustered in the Gene Ontology terms. The expansion of the β-amyrin synthase (bAS) gene, a key enzyme in the triterpenoid saponin pathway, was identified in the A. triphylla genome. Furthermore, transcriptome analysis of the two leaf types revealed differences in the activity of starch, sucrose, unsaturated fatty acid pathways, and oxidoreductase enzymes. The heat and endoplasmic reticulum pathways related to plant stress were active in the development of round type leaf, while an enhancement of pyrimidine metabolism related to cell development was confirmed in the development of the linear type leaf. This study provides insight into the evolution of bAS genes and the development of different leaf types in A. triphylla.

Funder

Agricultural Research Program for the Development of Agricultural Science

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3