Interspecific and Intraspecific Transcriptomic Variations Unveil the Potential High-Altitude Adaptation Mechanisms of the Parnassius Butterfly Species

Author:

Ding Chen1,Su Chengyong1ORCID,Li Yali1,Zhao Youjie1,Wang Yunliang12,Wang Ying12,Nie Ruie1ORCID,He Bo1,Ma Junye3,Hao Jiasheng1

Affiliation:

1. College of Life Sciences, Anhui Normal University, Wuhu 241002, China

2. College of Physical Education, Anhui Normal University, Wuhu 241002, China

3. Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China

Abstract

Parnassius butterflies have significantly advanced our understanding of biogeography, insect–plant interactions, and other fields of ecology and evolutionary biology. However, to date, little is known about the gene expression patterns related to the high-altitude adaptation of Parnassius species. In this study, we obtained high-throughput RNA-seq data of 48 adult Parnassius individuals covering 10 species from 12 localities in China, and deciphered their interspecific and intraspecific expression patterns based on comparative transcriptomic analyses. Though divergent transcriptional patterns among species and populations at different altitudes were found, a series of pathways related to genetic information processing (i.e., recombination, repair, transcription, RNA processing, and ribosome biogenesis), energy metabolism (i.e., oxidative phosphorylation, thermogenesis, and the citrate cycle), and cellular homeostasis were commonly enriched, reflecting similar strategies to cope with the high-altitude environments by activating energy metabolism, enhancing immune defense, and concurrently inhibiting cell growth and development. These findings deepen our understanding about the molecular mechanisms of adaptative evolution to extreme environments, and provide us with some theoretical criteria for the biodiversity conservation of alpine insects.

Funder

National Science Foundation of China

CAS Strategic Priority Research Program

Natural Science Foundation of Universities of Anhui Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3