Genome-Wide Association Analysis Identified Quantitative Trait Loci (QTLs) Underlying Drought-Related Traits in Cultivated Peanut (Arachis hypogaea L.)

Author:

Dang Phat1ORCID,Patel Jinesh2ORCID,Sorensen Ron1,Lamb Marshall1,Chen Charles Y.2ORCID

Affiliation:

1. USDA-ARS, National Peanut Research Laboratory, Dawson, GA 39842, USA

2. Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA

Abstract

Drought is a destructive abiotic stress that affects all critical stages of peanut growth such as emergence, flowering, pegging, and pod filling. The development of a drought-tolerant variety is a sustainable strategy for long-term peanut production. The U.S. mini-core peanut germplasm collection was evaluated for drought tolerance to the middle-season drought treatment phenotyping for pod weight, pod count, relative water content (RWC), specific leaf area (SLA), leaf dry matter content (LDMC), and drought rating. A genome-wide association study (GWAS) was performed to identify minor and major QTLs. A total of 144 QTLs were identified, including 18 significant QTLs in proximity to 317 candidate genes. Ten significant QTLs on linkage groups (LGs) A03, A05, A06, A07, A08, B04, B05, B06, B09, and B10 were associated with pod weight and pod count. RWC stages 1 and 2 were correlated with pod weight, pod count, and drought rating. Six significant QTLs on LGs A04, A07, B03, and B04 were associated with RWC stages 1 and 2. Drought rating was negatively correlated with pod yield and pod count and was associated with a significant QTL on LG A06. Many QTLs identified in this research are novel for the evaluated traits, with verification that the pod weight shared a significant QTL on chromosome B06 identified in other research. Identified SNP markers and the associated candidate genes provide a resource for molecular marker development. Verification of candidate genes surrounding significant QTLs will facilitate the application of marker-assisted peanut breeding for drought tolerance.

Funder

USDA Department of Agriculture, ARS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3