GSM1 Requires Hap4 for Expression and Plays a Role in Gluconeogenesis and Utilization of Nonfermentable Carbon Sources

Author:

Bhondeley Manika12ORCID,Liu Zhengchang1ORCID

Affiliation:

1. Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA

2. Kudo Biotechnology, 117 Kendrick Street, Needham, MA 02494, USA

Abstract

Multiple transcription factors in the budding yeast Saccharomyces cerevisiae are required for the switch from fermentative growth to respiratory growth. The Hap2/3/4/5 complex is a transcriptional activator that binds to CCAAT sequence elements in the promoters of many genes involved in the tricarboxylic acid cycle and oxidative phosphorylation and activates gene expression. Adr1 and Cat8 are required to activate the expression of genes involved in the glyoxylate cycle, gluconeogenesis, and utilization of nonfermentable carbon sources. Here, we characterize the regulation and function of the zinc cluster transcription factor Gsm1 using Western blotting and lacZ reporter-gene analysis. GSM1 is subject to glucose repression, and it requires a CCAAT sequence element for Hap2/3/4/5-dependent expression under glucose-derepression conditions. Genome-wide CHIP analyses revealed many potential targets. We analyzed 29 of them and found that FBP1, LPX1, PCK1, SFC1, and YAT1 require both Gsm1 and Hap4 for optimal expression. FBP1, PCK1, SFC1, and YAT1 play important roles in gluconeogenesis and utilization of two-carbon compounds, and they are known to be regulated by Cat8. GSM1 overexpression in cat8Δ mutant cells increases the expression of these target genes and suppresses growth defects in cat8Δ mutants on lactate medium. We propose that Gsm1 and Cat8 have shared functions in gluconeogenesis and utilization of nonfermentable carbon sources and that Cat8 is the primary regulator.

Funder

NIH

Publisher

MDPI AG

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3