Characteristics of the Vasa Gene in Silurus asotus and Its Expression Response to Letrozole Treatment

Author:

Yu Miao1,Wang Fangyuan1,Li Muzi1,Wang Yuan1,Gao Xiangzhe1,Zhang Hanhan1,Liu Zhenzhu1,Zhou Zhicheng1,Zhao Daoquan2,Zhang Meng1ORCID,Wang Lei1,Jiang Hongxia1,Qiao Zhigang1

Affiliation:

1. Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang 453007, China

2. Yiluo River Aquatic Biology Field Scientific Observation and Research Station in the Yellow River Basin of Henan Province, Lushi, Sanmenxia City 472200, China

Abstract

The identification and expression of germ cells are important for studying sex-related mechanisms in fish. The vasa gene, encoding an ATP-dependent RNA helicase, is recognized as a molecular marker of germ cells and plays a crucial role in germ cell development. Silurus asotus, an important freshwater economic fish species in China, shows significant sex dimorphism with the female growing faster than the male. However, the molecular mechanisms underlying these sex differences especially involving in the vasa gene in this fish remain poorly understood. In this work, the vasa gene sequence of S. asotus (named as Savasa) was obtained through RT-PCR and rapid amplification of cDNA end (RACE), and its expression in embryos and tissues was analyzed using qRT-PCR and an in situ hybridization method. Letrozole (LT) treatment on the larvae fish was also conducted to investigate its influence on the gene. The results revealed that the open reading frame (ORF) of Savasa was 1989 bp, encoding 662 amino acids. The SaVasa protein contains 10 conserved domains unique to the DEAD-box protein family, showing the highest sequence identity of 95.92% with that of Silurus meridionalis. In embryos, Savasa is highly expressed from the two-cell stage to the blastula stage in early embryos, with a gradually decreasing trend from the gastrula stage to the heart-beating stage. Furthermore, Savasa was initially detected at the end of the cleavage furrow during the two-cell stage, later condensing into four symmetrical cell clusters with embryonic development. At the gastrula stage, Savasa-positive cells increased and began to migrate towards the dorsal side of the embryo. In tissues, Savasa is predominantly expressed in the ovaries, with almost no or lower expression in other detected tissues. Moreover, Savasa was expressed in phase I–V oocytes in the ovaries, as well as in spermatogonia and spermatocytes in the testis, implying a specific expression pattern of germ cells. In addition, LT significantly upregulated the expression of Savasa in a concentration-dependent manner during the key gonadal differentiation period of the fish. Notably, at 120 dph after LT treatment, Savasa expression was the lowest in the testis and ovary of the high concentration group. Collectively, findings from gene structure, protein sequence, phylogenetic analysis, RNA expression patterns, and response to LT suggest that Savasa is maternally inherited with conserved features, serving as a potential marker gene for germ cells in S.asotus, and might participate in LT-induced early embryonic development and gonadal development processes of the fish. This would provide a basis for further research on the application of germ cell markers and the molecular mechanisms of sex differences in S. asotus.

Funder

the Key Scientific Research Projects of Higher Education Institutions of Henan Province

the Scientific and Technological Projects in Henan Province

the Open Fund of Tianjin Key Lab of Aquatic Ecology and Aquaculture

the Starting Fund for Doctoral Research of Henan Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3