Extraction of Innate Immune Genes in Dairy Cattle and the Regulation of Their Expression in Early Embryos

Author:

Wang Xue1,Guo Lili2,Zhang Wenguang123

Affiliation:

1. College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China

2. College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China

3. Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China

Abstract

As more and more of the available genomic data have been published, several databases have been developed for deciphering early mammalian embryogenesis; however, less research has been conducted on the regulation of the expression of natural immunity genes during early embryonic development in dairy cows. To this end, we explored the regulatory mechanism of innate immunity genes at the whole-genome level. Based on comparative genomics, 1473 innate immunity genes in cattle were obtained by collecting the latest reports on human innate immunity genes and updated bovine genome data for comparison, and a preliminary database of bovine innate immunity genes was constructed. In order to determine the regulatory mechanism of innate immune genes in dairy cattle early embryos, we conducted weighted co-expression network analysis of the innate immune genes at different developmental stages of dairy cattle early embryos. The results showed that specific module-related genes were significantly enriched in the MAPK signaling pathway. Protein–protein interaction (PPI) analysis showed gene interactions in each specific module, and 10 of the highest connectivity genes were chosen as potential hub genes. Finally, combined with the results for differential expressed genes (DEGs), ATF3, IL6, CD8A, CD69, CD86, HCK, ERBB3, LCK, ITGB2, LYN, and ERBB2 were identified as the key genes of innate immunity in dairy cattle early embryos. In conclusion, the bovine innate immunity gene set was determined and the co-expression network of innate immunity genes in the early embryonic stage of dairy cattle was constructed by comparing and analyzing the whole genome of bovines and humans. The findings in this study provide the basis for exploring the involvement and regulation of innate immune genes in the early embryonic development of dairy cattle.

Funder

National Key Research and Development Program

Inner Mongolia Natural Science Foundation Project

Inner Mongolia Science and Technology Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3