Key Genes FECH and ALAS2 under Acute High-Altitude Exposure: A Gene Expression and Network Analysis Based on Expression Profile Data

Author:

Zhao Yifan1,Zhu Lingling2,Shi Dawei3,Gao Jiayue2ORCID,Fan Ming1

Affiliation:

1. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

2. Beijing Institute of Basic Medical Sciences, Beijing 100850, China

3. School of Automation, Beijing Institute of Technology, Beijing 100850, China

Abstract

High-altitude acclimatization refers to the physiological adjustments and adaptation processes by which the human body gradually adapts to the hypoxic conditions of high altitudes after entering such environments. This study analyzed three mRNA expression profile datasets from the GEO database, focusing on 93 healthy residents from low altitudes (≤1400 m). Peripheral blood samples were collected for analysis on the third day after these individuals rapidly ascended to higher altitudes (3000–5300 m). The analysis identified significant differential expression in 382 genes, with 361 genes upregulated and 21 downregulated. Further, gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that the top-ranked enriched pathways are upregulated, involving blood gas transport, erythrocyte development and differentiation, and heme biosynthetic process. Network analysis highlighted ten key genes, namely, SLC4A1, FECH, EPB42, SNCA, GATA1, KLF1, GYPB, ALAS2, DMTN, and GYPA. Analysis revealed that two of these key genes, FECH and ALAS2, play a critical role in the heme biosynthetic process, which is pivotal in the development and maturation of red blood cells. These findings provide new insights into the key gene mechanisms of high-altitude acclimatization and identify potential biomarkers and targets for personalized acclimatization strategies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3