The Genetic Basis of the First Patient with Wiedemann–Rautenstrauch Syndrome in the Russian Federation

Author:

Kovalskaia Valeriia A.1ORCID,Kungurtseva Anastasiia L.2,Bostanova Fatima M.1,Vasiliev Peter A.1ORCID,Tabakov Vyacheslav Y.1,Orlova Mariia D.1,Povolotskaya Inna S.3,Novoselova Olga G.3ORCID,Bikanov Roman A.3,Akhyamova Mariia A.1,Tikhonovich Yulia V.2,Popovich Anastasiia V.2,Vitebskaya Alisa V.2,Dadali Elena L.1,Ryzhkova Oxana P.1ORCID

Affiliation:

1. Research Centre for Medical Genetics, 115522 Moscow, Russia

2. Pediatric Endocrinology Department, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia

3. JSC “First Genetics Laboratory”, 111123 Moscow, Russia

Abstract

Bi-allelic pathogenic variations within POLR3A have been associated with a spectrum of hereditary disorders. Among these, a less frequently observed condition is Wiedemann–Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome. This syndrome typically manifests neonatally and is characterized by growth retardation, evident generalized lipodystrophy with distinctively localized fat accumulations, sparse scalp hair, and atypical facial features. Our objective was to elucidate the underlying molecular mechanisms of Wiedemann–Rautenstrauch syndrome (WRS). In this study, we present a clinical case of a 7-year-old female patient diagnosed with WRS. Utilizing whole-exome sequencing (WES), we identified a novel missense variant c.3677T>C (p.Leu1226Pro) in the POLR3A gene (NM_007055.4) alongside two cis intronic variants c.1909+22G>A and c.3337-11T>C. Via the analysis of mRNA derived from fibroblasts, we reconfirmed the splicing-affecting nature of the c.3337-11T>C variant. Furthermore, our investigation led to the reclassification of the c.3677T>C (p.Leu1226Pro) variant as a likely pathogenic variant. Therefore, this is the first case demonstrating the molecular genetics of a patient with Wiedemann–Rautenstrauch syndrome from the Russian Federation. A limited number of clinical cases have been documented until this moment; therefore, broadening the linkage between phenotype and molecular changes in the POLR3A gene will significantly contribute to the comprehensive understanding of the molecular basis of POLR3A-related disorders.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3