Genome-Wide Identification and Characterization of CCT Gene Family from Microalgae to Legumes

Author:

Xu Yi1,Yao Huiying1,Lan Yanhong1,Cao Yu1,Xu Qingrui1,Xu Hui1,Qiao Dairong1,Cao Yi1

Affiliation:

1. Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China

Abstract

The CCT (CO, COL and TOC1) gene family has been elucidated to be involved in the functional differentiation of the products in various plant species, but their specific mechanisms are poorly understood. In the present investigation, we conducted a genome-wide identification and phylogenetic analysis of CCT genes from microalgae to legumes. A total of 700 non-redundant members of the CCT gene family from 30 species were identified through a homology search. Phylogenetic clustering with Arabidopsis and domain conservation analysis categorized the CCT genes into three families. Multiple sequence alignment showed that the CCT domain contains important amino acid residues, and each CCT protein contains 24 conserved motifs, as demonstrated by the motif analysis. Whole-genome/segment duplication, as well as tandem duplication, are considered to be the driving forces in the evolutionary trajectory of plant species. This comprehensive investigation into the proliferation of the CCT gene family unveils the evolutionary dynamics whereby WGD/segment duplication is the predominant mechanism contributing to the expansion of the CCT genes. Meanwhile, the examination of the gene expression patterns revealed that the expression patterns of CCT genes vary in different tissues and at different developmental stages of plants, with high expression in leaves, which is consistent with the molecular regulation of flowering in photosynthesis by CCT. Based on the protein–protein interaction analysis of CCT genes in model plants, we propose that the CCT gene family synergistically regulates plant development and flowering with light-signaling factors (PHYs and PIFs) and MYB family transcription factors. Understanding the CCT gene family’s molecular evolution enables targeted gene manipulation for enhanced plant traits, including optimized flowering and stress resistance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3