Genomic Prediction from Multi-Environment Trials of Wheat Breeding

Author:

García-Barrios Guillermo1ORCID,Crespo-Herrera Leonardo2ORCID,Cruz-Izquierdo Serafín1ORCID,Vitale Paolo2,Sandoval-Islas José Sergio3,Gerard Guillermo Sebastián2ORCID,Aguilar-Rincón Víctor Heber1,Corona-Torres Tarsicio1,Crossa José24,Pacheco-Gil Rosa Angela2ORCID

Affiliation:

1. Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico

2. International Maize and Wheat Improvement Center (CIMMYT), Km 35 Carretera México-Veracruz, Texcoco 56237, Estado de México, Mexico

3. Postgrado en Fitosanidad, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico

4. Posgrado en Socioeconomía Estadística e Informática, Colegio de Postgraduados, Texcoco 56264, Estado de México, Mexico

Abstract

Genomic prediction relates a set of markers to variability in observed phenotypes of cultivars and allows for the prediction of phenotypes or breeding values of genotypes on unobserved individuals. Most genomic prediction approaches predict breeding values based solely on additive effects. However, the economic value of wheat lines is not only influenced by their additive component but also encompasses a non-additive part (e.g., additive × additive epistasis interaction). In this study, genomic prediction models were implemented in three target populations of environments (TPE) in South Asia. Four models that incorporate genotype × environment interaction (G × E) and genotype × genotype (GG) were tested: Factor Analytic (FA), FA with genomic relationship matrix (FA + G), FA with epistatic relationship matrix (FA + GG), and FA with both genomic and epistatic relationship matrices (FA + G + GG). Results show that the FA + G and FA + G + GG models displayed the best and a similar performance across all tests, leading us to infer that the FA + G model effectively captures certain epistatic effects. The wheat lines tested in sites in different TPE were predicted with different precisions depending on the cross-validation employed. In general, the best prediction accuracy was obtained when some lines were observed in some sites of particular TPEs and the worse genomic prediction was observed when wheat lines were never observed in any site of one TPE.

Funder

Bill and Melinda Gates Foundation

USAID projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3