Genome-Wide Characterization of the Phenylalanine Ammonia-Lyase Gene Family and Their Potential Roles in Response to Aspergillus flavus L. Infection in Cultivated Peanut (Arachis hypogaea L.)

Author:

Chai Pengpei1,Cui Mengjie1,Zhao Qi1,Chen Linjie2,Guo Tengda1,Guo Jingkun1,Wu Chendi1,Du Pei1,Liu Hua2,Xu Jing2,Zheng Zheng2,Huang Bingyan2,Dong Wenzhao2,Han Suoyi1,Zhang Xinyou2

Affiliation:

1. The Shennong Laboratory/Postgraduate T&R Base of Zhengzhou University, Xinxiang 453500, China

2. Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China

Abstract

Phenylalanine ammonia-lyase (PAL) is an essential enzyme in the phenylpropanoid pathway, in which numerous aromatic intermediate metabolites play significant roles in plant growth, adaptation, and disease resistance. Cultivated peanuts are highly susceptible to Aspergillus flavus L. infection. Although PAL genes have been characterized in various major crops, no systematic studies have been conducted in cultivated peanuts, especially in response to A. flavus infection. In the present study, a systematic genome-wide analysis was conducted to identify PAL genes in the Arachis hypogaea L. genome. Ten AhPAL genes were distributed unevenly on nine A. hypogaea chromosomes. Based on phylogenetic analysis, the AhPAL proteins were classified into three groups. Structural and conserved motif analysis of PAL genes in A. hypogaea revealed that all peanut PAL genes contained one intron and ten motifs in the conserved domains. Furthermore, synteny analysis indicated that the ten AhPAL genes could be categorized into five pairs and that each AhPAL gene had a homologous gene in the wild-type peanut. Cis-element analysis revealed that the promoter region of the AhPAL gene family was rich in stress- and hormone-related elements. Expression analysis indicated that genes from Group I (AhPAL1 and AhPAL2), which had large number of ABRE, WUN, and ARE elements in the promoter, played a strong role in response to A. flavus stress.

Funder

the National Key R&D Plan

the National Natural Science Foundation of China

First Class Project of Shennong Laboratory

the China Agriculture Research System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3