Identification and Transcriptome Analysis of a Novel Allelic Mutant of NAL1 in Rice

Author:

Wang Yang12,Xu Wanxin1,Liu Yan1,Yang Jie1,Guo Xin1,Zhang Jiaruo1,Pu Jisong1,Chen Nenggang3,Zhang Wenfeng12

Affiliation:

1. College of Agricultural Science, Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan 615013, China

2. State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China

3. Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China

Abstract

Leaf morphology is a crucial aspect of plant architecture, yet the molecular mechanisms underlying leaf development remain incompletely understood. In this study, a narrow leaf mutant, m625, was identified in rice (Oryza sativa L.), exhibiting pleiotropic developmental defects. Pigment measurement revealed reduced levels of photochromic pigments in m625. Cytological analysis demonstrated that the m625 gene affected vascular patterns and cell division. Specifically, the narrowing of the leaf was attributed to a decrease in small vein number, shorter vein spacing, and an abnormal V-shaped arrangement of bulliform cells, while the thickening was caused by longer leaf veins, thicker mesophyll cells, and an increased number of parenchyma cell layers. The dwarf stature and thickened internode were primarily due to shortened internodes and an increase in cell layers, respectively. Positional cloning and complementation assays indicated that the m625 gene is a novel allele of NAL1. In the m625 mutant, a nucleotide deletion at position 1103 in the coding sequence of NAL1 led to premature termination of protein translation. Further RNA-Seq and qRT-PCR analyses revealed that the m625 gene significantly impacted regulatory pathways related to IAA and ABA signal transduction, photosynthesis, and lignin biosynthesis. Moreover, the m625 mutant displayed thinner sclerenchyma and cell walls in both the leaf and stem, particularly showing reduced lignified cell walls in the midrib of the leaf. In conclusion, our study suggests that NAL1, in addition to its known roles in IAA transport and leaf photosynthesis, may also participate in ABA signal transduction, as well as regulate secondary cell wall formation and sclerenchyma thickness through lignification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Open Project Program of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China

Liangshan Science and Technology Program

Open Project Program of Panxi Crops Research and Utilization Key Laboratory of Sichuan Province

Xichang Science and Technology Program

Xichang University Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3