WRKY10 Regulates Seed Size through the miR397a-LAC2 Module in Arabidopsis thaliana

Author:

Guo Wenbin1234,Yang Ke1234,Ye Hang1,Yao Jialing1,Li Jing234ORCID

Affiliation:

1. College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China

3. School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

4. Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China

Abstract

In angiosperms, seed size is a critical trait that is influenced by the complex interplay between the endosperm and seed coat. The HAIKU (IKU) pathway, involving the transcription factor WRKY10, plays a crucial role in regulating seed size in Arabidopsis thaliana. However, the downstream targets of WRKY10 and their roles in seed size determination remain largely unexplored. Here, we identified LACCASE2 (LAC2), a laccase gene involved in lignin biosynthesis, as a new downstream target of WRKY10. We observed that the expression of LAC2 was upregulated in the mini3 mutant, which is defective in WRKY10. We demonstrated that WRKY10 directly binds to the promoter of miR397a, activating its expression. miR397a, in turn, represses the expression of LAC2. Genetic analyses revealed that a mutation in LAC2 or overexpression of miR397a partially rescued the small seed phenotype of the MINISEED3 (MINI3) mutant mini3. Conversely, the overexpression of LAC2 in the wild type led to a decrease in seed size. These findings suggest that LAC2 functions as a negative regulator of seed size, and its expression is modulated by WRKY10 through miR397a. Our study uncovers a novel WRKY10-miR397a-LAC2 pathway that regulates seed size in Arabidopsis, providing new insights into the complex regulatory network governing seed development in plants.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3