GhWRKY40 Interacts with an Asparaginase GhAPD6 Involved in Fiber Development in Upland Cotton (Gossypium hirsutum L.)

Author:

Zhang Sujun12ORCID,Cai Xiao12,Wei Jingyan3,Wang Haitao12,Liu Cunjing12,Li Xinghe12,Tang Liyuan12,Zhou Xiaodong12,Zhang Jianhong12

Affiliation:

1. Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China

2. Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, China

3. National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China

Abstract

Fiber quality improvement is a primary goal in cotton breeding. Identification of fiber quality-related genes and understanding the underlying molecular mechanisms are essential prerequisites. Previously, studies determined that silencing the gene GhWRKY40 resulted in longer cotton fibers; however, both the underlying mechanisms and whether this transcription factor is additionally involved in the regulation of cotton fiber strength/fineness are unknown. In the current study, we verified that GhWRKY40 influences the fiber strength, fiber fineness, and fiber surface structure by using virus-induced gene silencing (VIGS). Potential proteins that may interact with the nucleus-localized GhWRKY40 were screened in a yeast two-hybrid (Y2H) nuclear-system cDNA library constructed from fibers at 0, 10, and 25 days post-anthesis (DPA) in two near-isogenic lines differing in fiber length and strength. An aspartyl protease/asparaginase-related protein, GhAPD6, was identified and confirmed by Y2H and split-luciferase complementation assays. The expression of GhAPD6 was approximately 30-fold higher in the GhWRKY40-VIGS lines at 10 DPA and aspartyl protease activity was significantly upregulated in the GhWRKY40-VIGS lines at 10–20 DPA. This study suggested that GhWRKY40 may interact with GhAPD6 to regulate fiber development in cotton. The results provide a theoretical reference for the selection and breeding of high-quality cotton fibers assisted by molecular technology.

Funder

Basic Research Funds of the Hebei Academy of Agriculture and Forestry Sciences

Youth Fund of the Hebei Natural Science Foundation

HAAFS Science and Technology Innovation Special Project

Major Projects in Agricultural Biological Breeding

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3