Hydropower Case Study Collection: Innovative Low Head and Ecologically Improved Turbines, Hydropower in Existing Infrastructures, Hydropeaking Reduction, Digitalization and Governing Systems

Author:

Quaranta EmanueleORCID,Bonjean Manuel,Cuvato Damiano,Nicolet Christophe,Dreyer Matthieu,Gaspoz Anthony,Rey-Mermet Samuel,Boulicaut Bruno,Pratalata Luigi,Pinelli Marco,Tomaselli Giuseppe,Pinamonti Paolo,Pichler Raffael,Turin Paolo,Turrin Daniele,Foust Jason,Trumbo Bradly,Ahmann Martin,Modersitzki Marc,Kist SusyORCID,Mosca Cecilia,Malerba Carlo,Francesconi Ada,Casoli Ivan,Ferrari Raffaele,Stefani Vittoria,Scibetta Marco,Meucci Lorenza,Gostner WalterORCID,Bergamin RiccardoORCID,Pretto Francesco De,Turcato Davide,Kocher Vincent,Lefaucheux Pierre,Elmaataoui Abdelali,Mariucci Mario,Sarma Prakriteesh,Slachmuylders Geert,Clementi Riccardo,Pasut Fabio,Bragato Nicola

Abstract

Hydropower remains a key renewable energy source in the pursuit of the decarbonization of the economy, although the relatively high potential impact of the hydro-morphological alterations it may cause poses significant concerns for aquatic ecosystems. In the last years, new technologies and practices have been increasingly adopted to minimize the impacts of hydropower plants, while improving efficiency and flexibility of energy generation. The overall effect of these innovations may be a more sustainable design and operation of hydropower, striking a better balance between the objectives of decarbonization and ecosystem protection. This contribution presents and discusses a few representative examples of hydropower installations from companies in Italy, France, Switzerland, Belgium and the USA, where solutions have been adopted in this direction. The case studies cover (1) ecologically improved and low head hydropower converters (Vortex turbine, Hydrostatic Pressure Machine, VLH and Girard-optimized turbines, hydrokinetic turbines), hydropeaking reduction (2) new control systems, governors and digitalization, (3) hydropower as a strategy for local sustainable development and (4) energy recovery in existing hydraulic infrastructures and aqueducts. It was found that better-governing systems can extend the life span of runners, for example avoiding the runner uplift during a trip. Digitalization can improve efficiency by 1.2%. New sustainable practices and turbines with better ecological behavior can minimize environmental impacts, like the reduction of fish mortality, improvement of fish habitat availability, reduction of oil for lubrication purposes and generation of economic incomes for local development. The use of existing structures reduces the total installation cost: examples are the total saving of 277 €/kW by reusing irrigation pipes and reservoirs, or the reduction of the investment period from 9 years to 6 years by turbining the environmental flow. Innovative low head hydropower converters can exhibit good ecological behavior, with reduced costs (<5000 €/kW) especially when installed in existing weirs. Results are discussed, contextualized and generalized to provide engineering data and tools to support future realizations of similar case studies; normalized costs, efficiency improvement, best practices and new technologies are discussed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3