Hybrid Decision-Making-Method-Based Intelligent System for Integrated Bogie Welding Manufacturing

Author:

Guan Kainan12,Sun Yang12,Yang Guang12,Yang Xinhua12

Affiliation:

1. School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China

2. Liaoning Key Laboratory of Welding and Reliability of Rail Transportation Equipment, Dalian Jiaotong University, Dalian 116028, China

Abstract

To address the challenges of incomplete knowledge representation, independent decision ranges, and insufficient causal decisions in bogie welding decisions, this paper proposes a hybrid decision-making method and develops a corresponding intelligent system. The collaborative case, rule, and knowledge graph approach is used to support structured documents and domain causality decisions. In addition, we created a knowledge model of bogie welding characteristics and proposed a case-matching method based on empirical weights. Several entity categorizations and relationship extraction models were trained under supervised conditions while building the knowledge graph. CRF and CR-CNN obtained high combined F1 scores (0.710 for CRF and 0.802 for CR-CNN) in the entity classification and relationship extraction tasks, respectively. We designed and developed an intelligent decision system based on the proposed method to implement engineering applications. This system was validated with some actual engineering data. The results show that the system obtained a high score on the accuracy test (0.947 for Corrected Accuracy) and can effectively complete structured document and causality decision-making tasks, having large research significance and engineering value.

Funder

National Natural Science Foundation of China

Foundation for Overseas Talents Training Project in Liaoning Colleges and Universities

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3