Data Lake Architecture for Smart Fish Farming Data-Driven Strategy

Author:

Benjelloun Sarah,El Aissi Mohamed El Mehdi,Lakhrissi YounesORCID,El Haj Ben Ali Safae

Abstract

Thanks to continuously evolving data management solutions, data-driven strategies are considered the main success factor in many domains. These strategies consider data as the backbone, allowing advanced data analytics. However, in the agricultural field, and especially in fish farming, data-driven strategies have yet to be widely adopted. This research paper aims to demystify the situation of the fish farming domain in general by shedding light on big data generated in fish farms. The purpose is to propose a dedicated data lake functional architecture and extend it to a technical architecture to initiate a fish farming data-driven strategy. The research opted for an exploratory study to explore the existing big data technologies and to propose an architecture applicable to the fish farming data-driven strategy. The paper provides a review of how big data technologies offer multiple advantages for decision making and enabling prediction use cases. It also highlights different big data technologies and their use. Finally, the paper presents the proposed architecture to initiate a data-driven strategy in the fish farming domain.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Lakes: A Survey of Concepts and Architectures;Computers;2024-07-22

2. Depot: Dependency-Eager Platform of Transformations;2023 IEEE International Conference on Cloud Computing Technology and Science (CloudCom);2023-12-04

3. A Data-Driven Paradigm for a Resilient and Sustainable Integrated Health Information Systems for Health Care Applications;Journal of Multidisciplinary Healthcare;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3