Electric Field Analysis on the Corona Discharge Phenomenon According to the Variable Air Space between the Ionizer and Ground Current Collector

Author:

Jang Kyung-Hoon1ORCID,Seo Sang-Won2,Kim Dong-Jin2

Affiliation:

1. Korea Conformity Laboratories, Material Division Department, Seoul 08503, Republic of Korea

2. SUNKWANG LTI, Research & Development, Seoul 06230, Republic of Korea

Abstract

In this paper, we present the optimized air space of the lightning protection rod (SK-AOR380) with the function of a charge transfer system (CTS). For evaluation of CTS in the laboratory setting, some studies have focused on the modification of the structure and shape of the CTS; the air space is designed (>2 mm) as an empirical design without quantitative data. However, in this paper, we have focused on the air space between the ionizer conductor and current collector to control the inception and occurrence position of corona discharge in air insulation. This is because the performance, such as the initial corona discharge inception of CTS, is determined by the air space. The simulation analysis was performed in a narrow, micro-sized air space as a first step, where the air space was reduced to the extent possible for simulation. To evaluate the performance of SK-AOR380 according to the narrow air space, we considered the numerical analysis method. The fundamental equations consist of Poisson’s equation and the charge continuity equation. Poisson’s equation for electric fields is a fully coupled numerical model based on the charge continuity equations for a positively charged ion, negatively charged ion, and free electron. Fowler–Nordheim electron emission was employed for the boundary condition at the surface of the ionizer conductor. To simulate the corona discharge behavior under standard lightning impulse voltage, we used a source of lightning voltage with 1.2/50 μs based on a double exponential equation; the corona discharge behaviors (electric field distribution, free electron density, positive and negative ion density) were investigated dependent on each time step (0.5, 1 and 1.2 μs) until 3.5 μs. The results revealed that the characteristics graph of free electron density, positive and negative ion density showed similar trends, with lightning impulse voltage increasing with increasing time steps until 1.2 μs and each density resulted in a decreasing trend from 1.2 μs to 3.5 μs. The SK-AOR380 is improved with a decreasing air space in terms of electric field distribution, electron, and ion density. In other words, the 0.0005 mm air space created a non-uniform electric field distribution with a large field enhancement, causing ionization to initiate corona discharge. In addition, in the case of a 0.0005 mm air space, the electric field and electron density are increased by 1.3 and 1.9 times, respectively, than that of 0.001 mm. However, there was no longer a significant difference under 0.0005 mm in the simulation results. To improve the CTS, we suggest the air space between the ionizer conductor and current collector should be less than 2 mm than that of conventional CTS from our research work.

Funder

KETEP

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3