Optical and Mass Flow Sensors for Aiding Vehicle Navigation in GNSS Denied Environment

Author:

Moussa MohamedORCID,Zahran ShadyORCID,Mostafa MostafaORCID,Moussa Adel,El-Sheimy Naser,Elhabiby Mohamed

Abstract

Nowadays, autonomous vehicles have achieved a lot of research interest regarding the navigation, the surrounding environmental perception, and control. Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) is one of the significant components of any vehicle navigation system. However, GNSS has limitations in some operating scenarios such as urban regions and indoor environments where the GNSS signal suffers from multipath or outage. On the other hand, INS standalone navigation solution degrades over time due to the INS errors. Therefore, a modern vehicle navigation system depends on integration between different sensors to aid INS for mitigating its drift during GNSS signal outage. However, there are some challenges for the aiding sensors related to their high price, high computational costs, and environmental and weather effects. This paper proposes an integrated aiding navigation system for vehicles in an indoor environment (e.g., underground parking). This proposed system is based on optical flow and multiple mass flow sensors integrations to aid the low-cost INS by providing the navigation extended Kalman filter (EKF) with forward velocity and change of heading updates to enhance the vehicle navigation. The optical flow is computed for frames taken using a consumer portable device (CPD) camera mounted in the upward-looking direction to avoid moving objects in front of the camera and to exploit the typical features of the underground parking or tunnels such as ducts and pipes. On the other hand, the multiple mass flow sensors measurements are modeled to provide forward velocity information. Moreover, a mass flow differential odometry is proposed where the vehicle change of heading is estimated from the multiple mass flow sensors measurements. This integrated aiding system can be used for unmanned aerial vehicles (UAV) and land vehicle navigations. However, the experimental results are implemented for land vehicles through the integration of CPD with mass flow sensors to aid the navigation system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3