Identification of Gut Microbiota Affecting Fiber Digestibility in Pigs

Author:

Niu Qing,Pu Guang,Fan LijuanORCID,Gao Chen,Lan Tingxu,Liu Chenxi,Du Taoran,Kim Sung WooORCID,Niu Peipei,Zhang Zongping,Li Pinghua,Huang RuihuaORCID

Abstract

Dietary fiber plays an important role in porcine gut health and welfare. Fiber is degraded by microbial fermentation in the intestine, and most gut microbiota related to fiber digestibility in pigs are worth pursuing. The aim of this study was to identify gut microbiota associated with the apparent total tract digestibility (ATTD) of neutral detergent fiber (NDF) and of acid detergent fiber (ADF) in pigs. Large phenotypic variations in the ATTD of NDF and of ADF were separately found among 274 Suhuai pigs. Microbial community structures were significantly different between high and low fiber digestibility groups. Fourteen genera separately dominated the communities found in the high ATTD (H-AD) of NDF and ADF samples and were in very low abundance in the low ATTD (L-AD) of NDF and ADF samples. In conclusion, norank_f__Bacteroidales_S24-7_group (p < 0.05), Ruminococcaceae_UCG-005 (p < 0.05), unclassified_f__Lachnospiraceae (p < 0.05), Treponema_2 (p < 0.01), and Ruminococcaceae_NK4A214_group (p < 0.01) were the main genera of gut microbiota affecting the ATTD of NDF in pigs. Christensenellaceae_R-7_group (p < 0.01), Treponema_2 (p < 0.05), Ruminococcaceae_NK4A214_group (p < 0.05), Ruminococcaceae_UCG-002 (p < 0.05), and [Eubacterium]_coprostanoligenes_group (p < 0.05) were the main genera of gut microbiota affecting the ATTD of ADF in pigs. The most important functions of the above different potential biomarkers were: carbohydrate transport and metabolism, general function prediction only, amino acid transport and metabolism, cell wall/membrane/envelope biogenesis, translation, transcription, replication, energy production and conversion, signal transduction mechanisms, and inorganic ion transport and metabolism. The most important metabolic pathways of the above different potential biomarkers were: membrane transport, carbohydrate metabolism, amino acid metabolism, replication and repair, translation, cell motility, energy metabolism, poorly characterized, nucleotide metabolism, metabolism of cofactors and vitamins, and cellular processes and signaling.

Funder

the National Natural Science Foundation

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3