Abstract
Alzheimer’s disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aβ) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood–brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.
Funder
Hallym University
National Research Foundation of Korea
Subject
Microbiology (medical),Molecular Biology,General Medicine,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献