Numerical Solution of Linear Volterra Integral Equation Systems of Second Kind by Radial Basis Functions

Author:

González-Rodelas PedroORCID,Pasadas MiguelORCID,Kouibia Abdelouahed,Mustafa Basim

Abstract

In this paper we propose an approximation method for solving second kind Volterra integral equation systems by radial basis functions. It is based on the minimization of a suitable functional in a discrete space generated by compactly supported radial basis functions of Wendland type. We prove two convergence results, and we highlight this because most recent published papers in the literature do not include any. We present some numerical examples in order to show and justify the validity of the proposed method. Our proposed technique gives an acceptable accuracy with small use of the data, resulting also in a low computational cost.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference52 articles.

1. Leçons sur les équations intégrales et intégro-différentielles;Volterra,1913

2. Volterra Equations and Applications;Corduneanu,2000

3. Numerical Analysis of Volterra Functional and Integral Equations;Baker,1997

4. Numerical solution of non-linear Volterra integral equations

5. Solving Volterra Integral Equations with ODE Codes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3