Wireless Sensor Network Energy Model and Its Use in the Optimization of Routing Protocols

Author:

Del-Valle-Soto CarolinaORCID,Mex-Perera CarlosORCID,Nolazco-Flores Juan Arturo,Velázquez RamiroORCID,Rossa-Sierra Alberto

Abstract

In this study, a Wireless Sensor Network (WSN) energy model is proposed by defining the energy consumption at each node. Such a model calculates the energy at each node by estimating the energy of the main functions developed at sensing and transmitting data when running the routing protocol. These functions are related to wireless communications and measured and compared to the most relevant impact on an energy standpoint and performance metrics. The energy model is validated using a Texas Instruments CC2530 system-on-chip (SoC), as a proof-of-concept. The proposed energy model is then used to calculate the energy consumption of a Multi-Parent Hierarchical (MPH) routing protocol and five widely known network sensors routing protocols: Ad-hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR), ZigBee Tree Routing (ZTR), Low Energy Adaptive Clustering Hierarchy (LEACH), and Power Efficient Gathering in Sensor Information Systems (PEGASIS). Experimental test-bed simulations were performed on a random layout topology with two collector nodes. Each node was running under different wireless technologies: Zigbee, Bluetooth Low Energy, and LoRa by WiFi. The objective of this work is to analyze the performance of the proposed energy model in routing protocols of diverse nature: reactive, proactive, hybrid and energy-aware. Experimental results show that the MPH routing protocol consumes 16%, 13%, and 5% less energy when compared to AODV, DSR, and ZTR, respectively; and it presents only 2% and 3% of greater energy consumption with respect to the energy-aware PEGASIS and LEACH protocols, respectively. The proposed model achieves a 97% accuracy compared to the actual performance of a network. Tests are performed to analyze the consumption of the main tasks of a node in a network.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference40 articles.

1. Packet Size Optimization in Wireless Sensor Networks for Smart Grid Applications

2. Analysis of Energy-Efficient Connected Target Coverage Algorithms for Industrial Wireless Sensor Networks

3. Efficient Energy Performance of the Wireless Sensor Networks and Cross Layer Optimization;Kabila;Asian J. Appl. Sci. Technol. (AJAST),2017

4. On the Routing Protocol Influence on the Resilience of Wireless Sensor Networks to Jamming Attacks

5. Ad Hoc On-Demand Distance Vector (AODV) Routing;Perkins,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3