Abstract
In this study, a Wireless Sensor Network (WSN) energy model is proposed by defining the energy consumption at each node. Such a model calculates the energy at each node by estimating the energy of the main functions developed at sensing and transmitting data when running the routing protocol. These functions are related to wireless communications and measured and compared to the most relevant impact on an energy standpoint and performance metrics. The energy model is validated using a Texas Instruments CC2530 system-on-chip (SoC), as a proof-of-concept. The proposed energy model is then used to calculate the energy consumption of a Multi-Parent Hierarchical (MPH) routing protocol and five widely known network sensors routing protocols: Ad-hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR), ZigBee Tree Routing (ZTR), Low Energy Adaptive Clustering Hierarchy (LEACH), and Power Efficient Gathering in Sensor Information Systems (PEGASIS). Experimental test-bed simulations were performed on a random layout topology with two collector nodes. Each node was running under different wireless technologies: Zigbee, Bluetooth Low Energy, and LoRa by WiFi. The objective of this work is to analyze the performance of the proposed energy model in routing protocols of diverse nature: reactive, proactive, hybrid and energy-aware. Experimental results show that the MPH routing protocol consumes 16%, 13%, and 5% less energy when compared to AODV, DSR, and ZTR, respectively; and it presents only 2% and 3% of greater energy consumption with respect to the energy-aware PEGASIS and LEACH protocols, respectively. The proposed model achieves a 97% accuracy compared to the actual performance of a network. Tests are performed to analyze the consumption of the main tasks of a node in a network.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献