Cycling Greenway Planning towards Sustainable Leisure and Recreation: Assessing Network Potential in the Built Environment of Chengdu

Author:

Yuan Suyang1ORCID,Dai Weiwei2,Zhang Yunhan3,Yang Jianqiang1

Affiliation:

1. Department of City Planning, School of Architecture, Southeast University, Nanjing 210096, China

2. Department of Landscape Architecture, School of Architecture, Southeast University, Nanjing 210096, China

3. College of Architecture and Environment, Sichuan University, Chengdu 610065, China

Abstract

In the quest to enhance urban green mobility and promote sustainable leisure activities, this study presents a comprehensive analysis of the potential for cycling greenways within the urban fabric of Chengdu, China. Leveraging the built environment and cycling routes, simulated by dockless bike-sharing (DBS) big data on weekend afternoons, the cycling flow on existing networks reflects the preference for leisure cycling in surroundings, thus indicating the potential for future enhancements to cycling greenway infrastructure. Employing Multi-Scale Geographically Weighted Regression (MGWR), this research captures the spatial heterogeneity in environmental factors influencing leisure cycling behaviors. The findings highlight the significant roles of mixed land use, network diversity, public transit accessibility, human-scale urban design, road network thresholds, and the spatially variable impacts of architectural form in determining cycling greenway potential. This study culminates with the development of an evaluation model, offering a scientific approach for cities to identify and prioritize the expansion of cycling infrastructure. Contributing to urban planning efforts for more livable and sustainable environments, this research underscores the importance of data-driven decision-making in urban green mobility enhancement by accurately identifying and efficiently upgrading infrastructure guided by public preferences.

Funder

National Key Research and Development Program of China's 14th Five-Year Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3