Issues of Data Acquisition and Interpretation of Paraseismic Measuring Signals Triggered by the Detonation of Explosive Charges

Author:

Pyra JózefORCID,Kłaczyński MaciejORCID

Abstract

The paper tackles the issues of data acquisition during the measuring of vibrations caused by the detonation of explosive charges in various types of works (blasting in mines, demolition works, tunneling). Depending on the placement of an explosive charge (a charge detonated on the surface or a charge placed in a hole), it triggers side effects in the form of mechanical vibrations, which are propagated in the environment and may pose a hazard to buildings. In the case of propagation in the air, there is an acoustic wave and an airblast wave. For the assessment analysis on the impact of vibrations on buildings, a ground-propagated signal is used, while what is propagated by air is a disturbance. Selected examples in the paper demonstrate how an acoustic wave and an airblast wave interferes with the signal recorded by geophones. Afterwards, the paper presents the results of the tests conducted at a training area, during which various masses of explosive charges placed in different ways were detonated. The examples demonstrate that this interference may lead to the misinterpretation of recorded measurements. This paper is the first of two papers that will present the results of research into this matter and the suggested resolutions in order to eliminate this interference.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference37 articles.

1. Blast Effects—Physical Properties of Shock Waves. Shock Wave and High Pressure Phenomena;Sochet,2018

2. Best Practices Guide for Urban Blasting Operations;Witham,2016

3. Applied Explosives Technology for Construction and Mining;Olofsson,1990

4. Mechanical Excavation in Mining and Civil Industries;Bilgin,2013

5. An Integrated System for Demolition Techniques Selection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3